资源简介
Composite kernel 用于高光谱影像分类,其可以很好的用于空间特征与光谱特征相结合,提高高光谱影像分类精度。

代码片段和文件信息
function [test_bc nb_kernel_selected nb_group_selected] = ...
call_gkl( x_train y_train x_test y_test ...
GKLoptions SVMoptions KERoptions all_C trial)
%%%
% _________________________________________________________________________
%
% call_gkl.m
% ----------
%
% applies gkl for differents hyperparameters
% _________________________________________________________________________
disp([‘trial ‘ num2str(trial)]);
tolerance = 1e-5;
% create the kernel according to the option defined and x_train
% -------------------------------------------------------------
mean_x_train = mean(x_train);
std_x_train = std(x_train 1);
ind_zeros = find(abs(std_x_train) < tolerance);
if ~isempty(ind_zeros)
std_x_train(ind_zeros) = 1;
end;
n_train = length(y_train);
x_train = x_train - repmat(mean_x_train n_train 1);
x_train = x_train ./ repmat(std_x_train n_train 1);
n_test = length(y_test);
x_test = x_test - repmat(mean_x_train n_test 1);
x_test = x_test ./ repmat(std_x_train n_test 1);
% build the kernel
disp(‘create the kernel (might be long)‘)
[K] = mklbuildkernel(x_train KERoptions.type_kernel ...
KERoptions.param_kernel [] [] KERoptions);
[weightinfo_kernel] = UnitTraceNormalization(x_train ...
KERoptions.type_kernel KERoptions.param_kernel ...
KERoptions.variablecell);
disp(‘kernel created‘);
nb_kernel = size(K 3);
for k=1:nb_kernel
K(::k) = K(::k) * weight(k);
end;
nb_param = length(all_C);
test_bc = zeros(1 nb_param);
nb_kernel_selected = zeros(1 nb_param);
nb_group_selected = zeros(1 nb_param);
% compute the solution for different hyperparameters
% --------------------------------------------------
for i=1:nb_param
disp([‘trial ‘ num2str(trial) ‘ param ‘ num2str(i)]);
[learning_sigma w b posw] = gkl_svm(K y_train all_C(i) GKLoptions SVMoptions);
% should not be used
if GKLoptions.numerical_precision
learning_sigma.weight(learning_sigma.weight < GKLoptions.numerical_precision) = 0;
end
ind = find(learning_sigma.weight > 0);
Kt = zeros(n_test length(posw));
for k=1:length(ind)
var = info_kernel(ind(k)).variable;
Kaux = svmkernel(x_test(: var) info_kernel(ind(k)).kernel ...
info_kernel(ind(k)).kerneloption x_train(posw var));
Kt = Kt + Kaux * weight(ind(k)) * learning_sigma.weight(ind(k));
end;
ypred = Kt*w+b;
test_bc(i) = mean(sign(ypred) == y_test)
nb_kernel_selected(i) = length(ind)
nb_group = max(GKLoptions.sigma_init.group);
for k=1:nb_group
ind_group = find(GKLoptions.sigma_init.group == k);
if ~isempty(intersect(ind_group ind))
nb_group_selected(i) = nb_group_selected(i) + 1;
end
end
nb_group_selected
end
clear K;
属性 大小 日期 时间 名称
----------- --------- ---------- ----- ----
目录 0 2009-01-30 13:58 ckl-toolbox\
文件 925 2009-01-16 06:00 ckl-toolbox\compute_cost_svm.m
文件 1636 2009-01-16 05:57 ckl-toolbox\compute_golden_search.m
文件 1289 2009-01-16 05:48 ckl-toolbox\compute_grad_svm_class.m
文件 1956 2009-01-16 05:58 ckl-toolbox\compute_normalized_sigma.m
文件 3213 2009-01-16 05:58 ckl-toolbox\compute_normal_vector.m
文件 765 2009-01-16 05:46 ckl-toolbox\compute_sum_K_sigma.m
文件 483 2009-01-16 05:42 ckl-toolbox\compute_x_to_K_sigma.m
文件 16996 2009-01-16 06:14 ckl-toolbox\gkl_svm.m
文件 7360 2009-01-16 05:45 ckl-toolbox\gkl_svm_update.m
文件 2996 2009-01-16 06:10 ckl-toolbox\gkl_call.m
文件 35147 2009-01-16 05:17 ckl-toolbox\licence.txt
文件 6044 2009-01-30 13:58 ckl-toolbox\test_gkl_ionosphere.m
文件 2996 2009-01-16 06:04 ckl-toolbox\call_gkl.m
文件 416 2009-01-16 06:02 ckl-toolbox\howto.txt
目录 0 2009-01-15 11:33 ckl-toolbox\kernel\
目录 0 2009-01-16 06:01 ckl-toolbox\data\
文件 877 2008-05-14 19:10 ckl-toolbox\kernel\CreateKernelListWithVariable.m
文件 1142 2008-05-14 19:10 ckl-toolbox\kernel\mklbuildkernel.m
文件 948 2008-05-14 19:10 ckl-toolbox\kernel\UnitTraceNormalization.m
文件 1182 2008-05-14 19:10 ckl-toolbox\kernel\WeightK.m
文件 747 2008-05-14 19:10 ckl-toolbox\kernel\build_efficientK.m
目录 0 2009-01-15 11:33 ckl-toolbox\kernel\.svn\
文件 690 2008-09-21 22:25 ckl-toolbox\kernel\.svn\all-wcprops
文件 2 2008-09-21 22:24 ckl-toolbox\kernel\.svn\format
文件 903 2008-12-17 08:16 ckl-toolbox\kernel\.svn\entries
目录 0 2009-01-15 11:33 ckl-toolbox\kernel\.svn\tmp\
目录 0 2009-01-15 11:33 ckl-toolbox\kernel\.svn\props\
目录 0 2009-01-15 11:33 ckl-toolbox\kernel\.svn\prop-ba
目录 0 2009-01-15 11:33 ckl-toolbox\kernel\.svn\text-ba
目录 0 2009-01-15 11:33 ckl-toolbox\kernel\.svn\tmp\props\
............此处省略14个文件信息
相关资源
- Linux内核函数Start_kernel()的功能
- Existence of Solutions to Volterra Integral Eq
- USB Composite DeviceUSB复合设备
- Facile low-temperature synthesis of graphene-C
- Linux Kernel Networking Implementation and The
- Reviewed on The Functionalization of Nanometer
- Learning with Kernels
- Kernel Methods for Pattern Analysis
- 内核漏洞的利用与防范A Guide to Kerne
- 《Windows内核原理与实现》wrk源码工具
- Linux4.4内核API文档
- Linux Kernel Development(3rd) 无水印原版
- PDF版深入理解Linux内核(第三版) (
- USB_Composite(HID+CDC).rar
- Microc-Os-Ii-The-Real-Time-Kernel
- Kernel Smoothing
- kernel-devel-3.10.0-862.14.4.el7.x86_64
- Kernel Methods and Machine Learning
- µC/OS-II: The Real-Time Kernel 2nd Edition英文
- 深入分析Linux内核源代码 陈莉君 PDF版
- 10.6.5破解内核mach_kernel
- Understanding the Linux Kernel 3rd 原版pdf
- linux内核分析及各个版本kernel源码地址
- kernel-headers-3.10.0-327.el7.x86_64.rpm
- Linux Kernel Development第三版
- An Introduction to Support Vector Machines and
- Rootkits-Subverting_the_Windows_Kernel
- petalinux编译uboot、kernel、rootfs方法
- kernel-devel-2.6.32-431.29.2.el6.x86_64.rpm
- Using the FreeRTOS Real Time Kernel - A Practi
评论
共有 条评论