资源简介
Keras实现经典的卷积神经网络用于cifar10图像分类:NIN,VGG,ResNet,DenseNet,SeNet

代码片段和文件信息
import keras
import numpy as np
from keras import optimizers
from keras.datasets import cifar10
from keras.models import Sequential
from keras.layers import Conv2D Dense Flatten MaxPooling2D
from keras.callbacks import LearningRateScheduler TensorBoard
from keras.preprocessing.image import ImageDataGenerator
batch_size = 128
epochs = 200
iterations = 391
num_classes = 10
log_filepath = ‘./lenet_dp_da‘
mean = [125.307 122.95 113.865]
std = [62.9932 62.0887 66.7048]
def build_model():
model = Sequential()
model.add(Conv2D(6 (5 5) padding=‘valid‘ activation = ‘relu‘ kernel_initializer=‘he_normal‘ input_shape=(32323)))
model.add(MaxPooling2D((2 2) strides=(2 2)))
model.add(Conv2D(16 (5 5) padding=‘valid‘ activation = ‘relu‘ kernel_initializer=‘he_normal‘))
model.add(MaxPooling2D((2 2) strides=(2 2)))
model.add(Flatten())
model.add(Dense(120 activation = ‘relu‘ kernel_initializer=‘he_normal‘))
model.add(Dense(84 activation = ‘relu‘ kernel_initializer=‘he_normal‘))
model.add(Dense(10 activation = ‘softmax‘ kernel_initializer=‘he_normal‘))
sgd = optimizers.SGD(lr=.1 momentum=0.9 nesterov=True)
model.compile(loss=‘categorical_crossentropy‘ optimizer=sgd metrics=[‘accuracy‘])
return model
def scheduler(epoch):
if epoch <= 60:
return 0.05
if epoch <= 120:
return 0.01
if epoch <= 160:
return 0.002
return 0.0004
if __name__ == ‘__main__‘:
# load data
(x_train y_train) (x_test y_test) = cifar10.load_data()
y_train = keras.utils.to_categorical(y_train num_classes)
y_test = keras.utils.to_categorical(y_test num_classes)
x_train = x_train.astype(‘float32‘)
x_test = x_test.astype(‘float32‘)
# data preprocessing [raw - mean / std]
for i in range(3):
x_train[:::i] = (x_train[:::i] - mean[i]) / std[i]
x_test[:::i] = (x_test[:::i] - mean[i]) / std[i]
# build network
model = build_model()
print(model.summary())
# set callback
tb_cb = TensorBoard(log_dir=log_filepath histogram_freq=0)
change_lr = LearningRateScheduler(scheduler)
cbks = [change_lrtb_cb]
# using real-time data augmentation
print(‘Using real-time data augmentation.‘)
datagen = ImageDataGenerator(horizontal_flip=True
width_shift_range=0.125height_shift_range=0.125fill_mode=‘constant‘cval=0.)
datagen.fit(x_train)
# start traing
model.fit_generator(datagen.flow(x_train y_trainbatch_size=batch_size)
steps_per_epoch=iterations
epochs=epochs
callbacks=cbks
validation_data=(x_test y_test))
# save model
model.save(‘lenet.h5‘)
属性 大小 日期 时间 名称
----------- --------- ---------- ----- ----
目录 0 2017-12-20 02:00 cifar-10-cnn-master\
目录 0 2017-12-20 02:00 cifar-10-cnn-master\1_Lecun_Network\
文件 2839 2017-12-20 02:00 cifar-10-cnn-master\1_Lecun_Network\LeNet_dp_da_keras.py
文件 3081 2017-12-20 02:00 cifar-10-cnn-master\1_Lecun_Network\LeNet_dp_da_wd_keras.py
文件 2380 2017-12-20 02:00 cifar-10-cnn-master\1_Lecun_Network\LeNet_dp_keras.py
文件 2119 2017-12-20 02:00 cifar-10-cnn-master\1_Lecun_Network\LeNet_keras.py
目录 0 2017-12-20 02:00 cifar-10-cnn-master\2_Network_in_Network\
文件 4654 2017-12-20 02:00 cifar-10-cnn-master\2_Network_in_Network\Network_in_Network_bn_keras.py
文件 4285 2017-12-20 02:00 cifar-10-cnn-master\2_Network_in_Network\Network_in_Network_keras.py
目录 0 2017-12-20 02:00 cifar-10-cnn-master\2_Network_in_Network\nin\
文件 422438 2017-12-20 02:00 cifar-10-cnn-master\2_Network_in_Network\nin\events.out.tfevents.1501857002.dlsummer-BM1AF-BP1AF-BM6AF
目录 0 2017-12-20 02:00 cifar-10-cnn-master\2_Network_in_Network\nin_bn\
文件 1776892 2017-12-20 02:00 cifar-10-cnn-master\2_Network_in_Network\nin_bn\events.out.tfevents.1501979688.bg-CGI
目录 0 2017-12-20 02:00 cifar-10-cnn-master\3_Vgg19_Network\
文件 7645 2017-12-20 02:00 cifar-10-cnn-master\3_Vgg19_Network\Vgg19_keras.py
文件 1582 2017-12-20 02:00 cifar-10-cnn-master\3_Vgg19_Network\Vgg_prediction.py
目录 0 2017-12-20 02:00 cifar-10-cnn-master\3_Vgg19_Network\test_pic\
文件 82410 2017-12-20 02:00 cifar-10-cnn-master\3_Vgg19_Network\test_pic\cat.jpg
文件 8892 2017-12-20 02:00 cifar-10-cnn-master\3_Vgg19_Network\test_pic\puzzle.jpeg
文件 12270 2017-12-20 02:00 cifar-10-cnn-master\3_Vgg19_Network\test_pic\tiger.jpeg
目录 0 2017-12-20 02:00 cifar-10-cnn-master\4_Residual_Network\
文件 5255 2017-12-20 02:00 cifar-10-cnn-master\4_Residual_Network\ResNet_keras.py
目录 0 2017-12-20 02:00 cifar-10-cnn-master\5_Wide_Residual_Network\
文件 5003 2017-12-20 02:00 cifar-10-cnn-master\5_Wide_Residual_Network\Wide_ResNet_keras.py
目录 0 2017-12-20 02:00 cifar-10-cnn-master\6_ResNeXt\
文件 5421 2017-12-20 02:00 cifar-10-cnn-master\6_ResNeXt\ResNeXt_keras.py
目录 0 2017-12-20 02:00 cifar-10-cnn-master\7_DenseNet\
文件 5248 2017-12-20 02:00 cifar-10-cnn-master\7_DenseNet\DenseNet_keras.py
目录 0 2017-12-20 02:00 cifar-10-cnn-master\8_SENet\
文件 6442 2017-12-20 02:00 cifar-10-cnn-master\8_SENet\SENet_Keras.py
目录 0 2017-12-20 02:00 cifar-10-cnn-master\9_Multi-GPU\
............此处省略21个文件信息
- 上一篇:随机抽签程序delphi原程序经典
- 下一篇:A计划 编程内功修炼
相关资源
- res10_300x300_ssd_iter_140000.caffemodel与dep
- Uninstall_Cortana_WINCLIENT.CN.rar
- VisualStudioUninstaller vs卸载工具
- Cellular automata Model: an Adaptive Approach
- In vitro screening of lactobacilli with antago
- Indentification of Interface Blocker to the LA
- Simulation of Active Heave Compensation System
- FEATURE SELECTION FOR KNOWLEDGE DISCOVERY AND
- Investigation of the Lower Resistance Meridian
- 机器学习个人笔记完整版v5.2-A4打印版
-
Changes of the ex
pression of β-catenin - Cluster Ensembles – A Knowledge Reuse fr
-
Databa
se Reliability Engineering Designing - Catalytic Activity of Styrene-divinyl Benzene
- Spectroscopic Study on Cu2+-induced Abnormally
- TH upstream-inhibited ARHGAP12 subnetwork for
- Bishop - Pattern Recognition And Machine Learn
- [en]深度学习[Deep Learning: Adaptive Compu
- 基于SSD的车辆检测与识别
- 果蝇优化算法优化支持向量回归程序
- Wikipedia机器学习迷你电子书之四《D
- AV Foundation 开发秘籍 英文版 Learning
- Google论文\“Wide & Deep Learning for Recom
- Learning From Data Yaser S. Abu-Mostafa
- 《增强学习导论》Reinforcement Learning
- vgg模型的复数域改进
- titanic_dataset.csv泰坦尼克数据集
- AUTODYN安世亚太培训教程
- 深度学习算法论文
- TensorFlow Machine Learning Cookbook+无码高清
评论
共有 条评论