资源简介
曾经做的一个模糊控制的船舶航向仿真,能显示模糊控制输入输出三维立体图。

代码片段和文件信息
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Fuzzy Model Reference Learning Control (FMRLC) System for a Tanker Ship
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% By: Kevin Passino
% Version: 4/26/01
%
% Notes: This program has evolved over time and uses programming
% ideas of Andrew Kwong Jeff Layne and Brian Klinehoffer.
%
% This program simulates an FMRLC for a tanker
% ship. It has a fuzzy controller with two inputs the error
% in the ship heading (e) and the change in that error (c). The output
% of the fuzzy controller is the rudder input (delta). The FMRLC
% adjusts the fuzzy controller to try to get tanker ship heading (psi)
% to track the output of a “reference model“ (psi_m) that has as an
% input the reference input heading (psi_r). We simulate the tanker
% as a continuous time system that is controlled by an FMRLC that
% is implemented on a digital computer with a sampling interval of T=1 sec.
%
% This program can be used to illustrate:
% - How to code an FMRLC (for two inputs and one output
% for the controller and “fuzzy inverse model“).
% - How to tune the input and output gains of an FMRLC.
% - How changes in plant conditions (“ballast“ and “full“ and speed)
% can affect performance and how the FMRLC can adapt to improve
% performance when there are such changes.
% - How the effects of sensor noise (heading sensor noise) and plant
% disturbances (wind hitting the side of the ship) can be reduced
% over the case of non-adaptive fuzzy control.
% - The shape of the nonlinearity synthesized by the FMRLC
% by plotting the input-output map of the fuzzy controller at the
% end of the simulation (and providing the output membership function
% centers).
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
clear % Clear all variables in memory
% Initialize ship parameters
ell=350; % Length of the ship (in meters)
abar=1; % Parameters for nonlinearity
bbar=1;
% Define the reference model (we use a first order transfer function
% k_r/(s+a_r)):
a_r=1/150;
k_r=1/150;
% Initialize parameters for the fuzzy controller
nume=11; % Number of input membership functions for the e
% universe of discourse (can change this but must also
% change some variables below if you make such a change)
numc=11; % Number of input membership functions for the c
% universe of discourse (can change this but must also
% change some variables below if you make such a change)
% Next we define the scaling gains for tuning membership functions for
% universes of discourse for e change in e (what we call c) and
% delta. These are g1 g2 and g0 respectively
% These can be tuned to try to improve the performance.
% First guess:
g1=1/pi;g2=100;g0=8*pi/18; % Chosen since:
% g1: The heading error is at most 180 deg (pi rad)
% g2: Just a guess - that ship heading will change at most
% by 0.01
属性 大小 日期 时间 名称
----------- --------- ---------- ----- ----
文件 36259 2010-10-20 10:14 fmrlc_tanker.m
----------- --------- ---------- ----- ----
36259 1
- 上一篇:Matlab调用Cplex教程
- 下一篇:平凸透镜光线追迹
相关资源
-
Fuzzysimuli
nk有关模糊PID问题概述-自适 - 正负斜率LFM信号的仿真(信号生成,
- 论文研究-电加热模糊PID控制及仿真研
- 模糊聚类图像分割FCM/FLICM等
- 模糊控制及其MATLAB应用
- 王立新Matlab模糊系统与模糊控制教程
-
基于SIMUli
nk的汽车发动机怠速模糊神 - 永磁同步电机的模糊PI控制.rar
- 基于matlab的模糊边缘检测
- matlab运动模糊图像复原 实验报告
- 基于核回归kernel regression方法的去模糊
- 基于模糊控制的永磁同步电机驱动系
- 模糊PID在热水锅炉温度控制系统中的
- 智能控制及matlab仿真实验知道
- 神经模糊控制理论及应用[李国勇][电
- 陈继光《Matlab与自适应神经网络模糊
- 多种PID控制算法-matlab 实现
- 基于模糊PID的麦克纳姆轮移动平台的
- 高斯模糊图像的盲复原
- ANFIS自适应模糊推理算法Matlab设计
- MATLAB 模糊逻辑工具箱Fuzzy Logic Toolbo
- 模糊车牌识别
-
倒立摆的模糊控制基于simuli
nk仿真, - 课件《神经.模糊.预测控制及其MATLA
- 基于单片机的温度测控系统设计
- MATLAB运动模糊图像复原
- 直流电机模糊控制系统的MATLAB/Simu
- 无刷直流电机基于模糊PID的速度控制
- 主动悬架LQG控制与模糊PID控制的比较
- 基于Matlab实现的图像分割的常用算法
评论
共有 条评论