资源简介
Contents
Preface xv
Prologue: A machine learning sampler 1
1 The ingredients of machine learning 13
1.1 Tasks: the problems that can be solved with machine learning . . . . . . . 14
Looking for structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Evaluating performance on a task . . . . . . . . . . . . . . . . . . . . . . . . 18
1.2 Models: the output of machine learning . . . . . . . . . . . . . . . . . . . . 20
Geometric models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Probabilistic models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Logical models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Grouping and grading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
1.3 Features: the workhorses of machine learning . . . . . . . . . . . . . . . . 38
Two uses of features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Feature construction and transformation . . . . . . . . . . . . . . . . . . . 41
Interaction between features . . . . . . . . . . . . . . . . . . . . . . . . . . 44
1.4 Summary and outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
What you’ll find in the rest of the book . . . . . . . . . . . . . . . . . . . . . 48
2 Binary classification and related tasks 49
2.1 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
ixx Contents
Assessing classification performance . . . . . . . . . . . . . . . . . . . . . . 53
Visualising classification performance . . . . . . . . . . . . . . . . . . . . . 58
2.2 Scoring and ranking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Assessing and visualising ranking performance . . . . . . . . . . . . . . . . 63
Turning rankers into classifiers . . . . . . . . . . . . . . . . . . . . . . . . . 69
2.3 Class probability estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Assessing class probability estimates . .
代码片段和文件信息
- 上一篇:Extended YaleB
- 下一篇:物体的正反面识别图像处理
相关资源
- ReportMachine 交叉报表 学生成绩表
- reportmachine帮助电子书
- ppt 机器学习.ppt
- Logistic回归总结非常好的机器学习总结
- Convex Analysis and Optimization (Bertsekas
- 机器学习个人笔记完整版v5.2-A4打印版
- JUNIOR:粒子物理学中无监督机器学习
- 语料库.zip
- TH upstream-inhibited ARHGAP12 subnetwork for
- Bishop - Pattern Recognition And Machine Learn
- [en]深度学习[Deep Learning: Adaptive Compu
- 中国科学技术大学 研究生课程 机器学
- 遗传算法越野小车unity5.5
- 吴恩达机器学习编程题
- shape_predictor_68_face_landmarks.dat.bz2 68个标
- 机器学习实战高清pdf,中文版+英文版
- 李宏毅-机器学习(视频2017完整)
- 机器学习深度学习 PPT
- 麻省理工:深度学习介绍PPT-1
- Wikipedia机器学习迷你电子书之四《D
- AV Foundation 开发秘籍 英文版 Learning
- Google论文\“Wide & Deep Learning for Recom
- Learning From Data Yaser S. Abu-Mostafa
- 《增强学习导论》Reinforcement Learning
- 北大林宙辰:机器学习一阶算法的优
- titanic_dataset.csv泰坦尼克数据集
- 李宏毅深度学习ppt
- 机器学习方法R实现-用决策树、神经网
- 数字金融反欺诈白皮书
- 机器学习班PPT原件全邹博
评论
共有 条评论