资源简介
Attention-CNN
注意力机制细腻度图片分类。
ResNet改造
代码片段和文件信息
import mxnet as mx
import proposal
import proposal_target
from rcnn.config import config
eps = 2e-5
use_global_stats = True
workspace = 512
res_deps = {‘50‘: (3 4 6 3) ‘101‘: (3 4 23 3) ‘152‘: (3 8 36 3) ‘200‘: (3 24 36 3)}
units = res_deps[‘101‘]
filter_list = [256 512 1024 2048]
def residual_unit(data num_filter stride dim_match name):
bn1 = mx.sym.BatchNorm(data=data fix_gamma=False eps=eps use_global_stats=use_global_stats name=name + ‘_bn1‘)
act1 = mx.sym.Activation(data=bn1 act_type=‘relu‘ name=name + ‘_relu1‘)
conv1 = mx.sym.Convolution(data=act1 num_filter=int(num_filter * 0.25) kernel=(1 1) stride=(1 1) pad=(0 0)
no_bias=True workspace=workspace name=name + ‘_conv1‘)
bn2 = mx.sym.BatchNorm(data=conv1 fix_gamma=False eps=eps use_global_stats=use_global_stats name=name + ‘_bn2‘)
act2 = mx.sym.Activation(data=bn2 act_type=‘relu‘ name=name + ‘_relu2‘)
conv2 = mx.sym.Convolution(data=act2 num_filter=int(num_filter * 0.25) kernel=(3 3) stride=stride pad=(1 1)
no_bias=True workspace=workspace name=name + ‘_conv2‘)
bn3 = mx.sym.BatchNorm(data=conv2 fix_gamma=False eps=eps use_global_stats=use_global_stats name=name + ‘_bn3‘)
act3 = mx.sym.Activation(data=bn3 act_type=‘relu‘ name=name + ‘_relu3‘)
conv3 = mx.sym.Convolution(data=act3 num_filter=num_filter kernel=(1 1) stride=(1 1) pad=(0 0) no_bias=True
workspace=workspace name=name + ‘_conv3‘)
if dim_match:
shortcut = data
else:
shortcut = mx.sym.Convolution(data=act1 num_filter=num_filter kernel=(1 1) stride=stride no_bias=True
workspace=workspace name=name + ‘_sc‘)
sum = mx.sym.ElementWiseSum(*[conv3 shortcut] name=name + ‘_plus‘)
return sum
def get_resnet_conv(data):
# res1
data_bn = mx.sym.BatchNorm(data=data fix_gamma=True eps=eps use_global_stats=use_global_stats name=‘bn_data‘)
conv0 = mx.sym.Convolution(data=data_bn num_filter=64 kernel=(7 7) stride=(2 2) pad=(3 3)
no_bias=True name=“conv0“ workspace=workspace)
bn0 = mx.sym.BatchNorm(data=conv0 fix_gamma=False eps=eps use_global_stats=use_global_stats name=‘bn0‘)
relu0 = mx.sym.Activation(data=bn0 act_type=‘relu‘ name=‘relu0‘)
pool0 = mx.symbol.Pooling(data=relu0 kernel=(3 3) stride=(2 2) pad=(1 1) pool_type=‘max‘ name=‘pool0‘)
# res2
unit = residual_unit(data=pool0 num_filter=filter_list[0] stride=(1 1) dim_match=False name=‘stage1_unit1‘)
for i in range(2 units[0] + 1):
unit = residual_unit(data=unit num_filter=filter_list[0] stride=(1 1) dim_match=True name=‘stage1_unit%s‘ % i)
# res3
unit = residual_unit(data=unit num_filter=filter_list[1] stride=(2 2) dim_match=False name=‘stage2_unit1‘)
for i in range(2 units[1] + 1):
相关资源
- 基于TensorFlow实现CNN文本分类实验指导
- 利用CNN网络实现mnist图像分类,手动实
- Python-用PyTorch10实现FasterRCNN和MaskRCNN比
- Python-基于tensorflow实现的用textcnn方法
- Python-Keras实现Inceptionv4InceptionResnetv1和
- Python-FastSCNN的PyTorch实现快速语义分割
- RESNET、GOOGLENET等Python代码实现
- 基于深度学习堆栈自动编码器模型的
- 性别模型库 simple_CNN.81-0.96.hdf5
- lightened_cnn_S 5M模型
- TBCNN 源码
- faster rcnn(python+caffe)源代码
- CNN卷积神经网络PYTHON
- 基于CNN的图像搜索demo
- python实现的卷积神经网络CNN无框架
- 机器学习对应的相关python代码SVM、C
- 基于 CNN 的疲劳检测源码-Python
- CNN网络代码,数据集,及对应论文和
- Faster-RCNN-TensorFlow-Python3.5-master
- MTCNN源码python版
- keras实现中文文本分类
- pytorch版本手写体识别MNIST.zip
- Mask R-CNN源码(TensorFlow版本)
- TensorflowOpenCV实现的CNN车牌识别代码
- 文本分类代码集合含数据_TextCNN_Text
- python实现CNN中文文本分类
- Deep learning with Python Francois Chollet
- 基于卷积神经网络的手势识别
- CNN用于图像分类以外的数字序列.rar
- DnCNN tensorflow实现
评论
共有 条评论